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Abstract. It is pointed out that the classical propagation model can be in accord with the Sagnac effect due
to earth’s rotational and orbital motions in the high-precision GPS (global positioning system) and inter-
planetary radar, if the reference frame of the classical propagation medium is endowed with a switchability
according to the location of the wave. Accordingly, it is postulated that, as in the obsolete theory, electro-
magnetic waves propagate via a medium like the ether. However, the ether is not universal. It is proposed
that in the region under sufficient influence of the gravity due to the earth, the sun, or another celestial
body, there forms a local ether, which in turn is stationary with respect to the gravitational potential of the
respective body. For earthbound and interplanetary propagation, the medium is stationary in a geocentric
and a heliocentric inertial frame, respectively. An electromagnetic wave propagates at a constant speed
with respect to the associated local ether, independent of the motions of source and receiver. Based on
this local-ether model of wave propagation, a wide variety of earthbound, interplanetary, and interstellar
propagation phenomena are accounted for. Strong evidence of this new classical model is its consistent
account of the Sagnac effect due to earth’s motions among GPS, the intercontinental microwave link, and
the interplanetary radar. Moreover, as examined within the present precision, this model is still in accord
with the Michelson–Morley experiment. To test the local-ether propagation model, a one-way-link rotor
experiment is proposed.

1 Introduction

Light is an ubiquitous phenomenon in everyday’s life. The
exploration of the speed of light and the propagation
mechanism began a long time ago. A pioneering investiga-
tion by Roemer in as early as 1675 was with an observation
in interplanetary astronomy, where the apparent time in-
terval between two successive eclipses of a moon of Jupiter
was recorded over the duration of a couple of months [1].
It has been found that the apparent interval is a function
of earth’s position on its orbit around the sun and depends
on the radial speed of the earth relative to the moon of
Jupiter, where the radial speed is mainly due to earth’s
orbital motion. This variation in the apparent interval is
a demonstration that the speed of light is finite. Further,
with the astronomical knowledge of planetary motions in
the solar system, this interval variation has been used to
estimate the speed of light with an accuracy of about 10
percent. The first terrestrial experiment to determine the
speed of light is due to Fizeau, who in 1849 sent a focused
light beam through a toothed wheel with variable angular
speed to a mirror a few km away and then back. At a suit-
able angular speed, the reflected light will hit the tooth
and disappear to an observer behind the rotating wheel.
From this angular speed along with the structure of teeth
and the separation distance between wheel and mirror, the
round-trip propagation time and hence the speed of light
can be determined to a higher accuracy. As to the propa-

gation mechanism it was generally believed, before the ad-
vent of Einstein’s special relativity, that light propagates
by means of a universal medium called ether. Michelson
and Morley attempted to measure the velocity of the earth
with respect to the supposed universal ether by using in-
terferometry. It is believed that the earth should not hap-
pen to be stationary with respect to the universal ether
and hence the speed of the earth with respect to the sup-
posed universal ether should at least be the linear speed
due to earth’s orbital motion around the sun [2]. In 1887
the Michelson–Morley experiment came up with a nega-
tive result of zero or uncertainly small phase shift which
indicates that the speed of the earth with respect to the
supposed ether is much lower than this linear speed due
to the orbital motion [1]. This result definitively rules out
the effect of earth’s orbital motion on the propagation of
light. This interference result is commonly extrapolated to
rule out the effect of earth’s rotation, which has a much
slower linear speed, and thus is known as a null result.
Then this widely accepted null result makes the existence
of the universal ether unacceptable. After the introduc-
tion of the special relativity in 1905, the notion of ether
eventually became obsolete.

More recently, there have been developed several high-
precision experiments which rely in a direct way on the
propagation mechanism: the global positioning system
(GPS), the intercontinental microwave link, and the ex-
periments with interplanetary radar. Based on precise
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knowledge of the terrestrial geography and the motions
of earth’s satellites, spacecrafts, and of the planets, these
experiments can provide decisive evidence in the determi-
nation of the propagation mechanism of electromagnetic
waves. In this investigation, we examine the propagation
formulas adopted in routine practice of these experiments,
particularly the effects of earth’s rotational and orbital
motions on wave propagation. Thereafter, it will be shown
deliberately that these propagation formulas are actually
in accord with the classical propagation model, except for
the reference frame of propagation and the corresponding
discrepancy in the effect of earth’s motions among these
experiments. Further, the key point of this investigation
will be presented: to show that this discrepancy can be
solved if the classical propagation model is slightly modi-
fied in such a way that the propagation frame is endowed
with a switchability according to the location of the wave:
earthbound, interplanetary, or interstellar. Thereby, this
new classical model can be in excellent accord with the
aforementioned high-precision experiments. Moreover, it
can account for the Michelson–Morley experiment and a
variety of other propagation phenomena. Furthermore, by
modifying the speed of light in a gravitational potential,
it will be shown that this simple model is also in accord
with the propagation experiments commonly ascribed to
the general theory of relativity. Meanwhile, the proposed
model also leads to some new predictions which provide
different approaches to test its validity.

2 Classical propagation model
and Sagnac effect

To begin with, we briefly review the classical model of
wave propagation, particularly the associated Sagnac ef-
fect. Consider a wave propagating from a transmitter to
a receiver via a medium. The propagation path is un-
derstood to lie along the line connecting the transmitter
and the receiver at the instant when the wave is emitted.
Quantitatively, as discussed in [3], the propagation-path
length Rt is the geometric distance from the transmitter
to the receiver at the instant t′ of wave emission and is
given by

Rt = |re(t′) − rs(t′)| = |Rt|, (1)

where re and rs are the position vectors of the receiver
and the transmitter, respectively.

An important quantity closely related to the propaga-
tion-path length is the propagation range which presents
the actual length of wave propagation over the medium.
Quantitatively, the propagation range R is the distance
from the transmitter at the instant t′ of wave emission to
the receiver at the instant t of reception and is given by

R = |re(t) − rs(t′)| = |Rt + re(t) − re(t′)|. (2)

It is essential to note that there is a significant discrepancy
between Rt and R in their dependences on the reference
frame. The propagation-path length Rt is associated with

two positions at the identical instants and hence is invari-
ant in different frames, whereas the propagation range R
in general is different in different frames, since it is associ-
ated with two positions (or with the receiver position) at
two distinct instants.

According to the classical propagation model, the
propagation speed of the electromagnetic wave in free
space with respect to the ether is c, the speed of light.
Further, the propagation delay time τ (= t − t′) from the
source to the receiver can be given in terms of the propa-
gation speed c in the simple form of

τ = R/c, (3)

if and only if the position vectors re and rs are referred
to the unique reference frame in which the ether is sta-
tionary. Otherwise, the propagation speed as well as the
propagation range will change in a complicated way to
make the propagation time invariant in a different frame,
as it should. Thus the propagation range R is understood
to be referred to the unique propagation frame.

It can be convenient to express the propagation time
in terms of the frame-independent path length. However,
due to the movement of the receiver, the propagation time
τ is not equal to Rt/c, although the difference is slight or-
dinarily. To keep this simple relation with a high accuracy,
a treatment in the path length is needed.

The difference between the propagation range R and
the path length Rt is known as the Sagnac effect which is
due to the movement of the receiver during wave propa-
gation with respect to the unique propagation frame. For
a receiver moving at a fixed velocity ve, the propagation
range R is given implicitly as

R = |Rt + veR/c| , (4)

where the receiver velocity ve as well as the position vector
re is referred to the unique propagation frame.

When the receiver is moving radially (in a direction
longitudinal to the path) such that ve is parallel to ±Rt,
the propagation range R can be given explicitly in terms
of the path length Rt by

R = Rt
c

c ∓ ve
, (5)

where the receiver speed ve = |ve|. This formula leads
immediately to τ = Rt/(c ∓ ve), which is occasionally
interpreted to be: when the receiver is moving radially,
the propagation speed changes to (c∓ve) while the Sagnac
effect is omitted tacitly.

For the receiver velocity of a general direction, the
propagation-range formula given to the second order of
1/c can be shown to be [4]

R = Rt

{
1 +

ue

c
+

1
2c2 (u

2
e + v2

e + ae·Rt)
}

, (6)

where the receiver radial speed ue = ve ·R̂t, the unit vector
R̂t = Rt/Rt, and the receiver acceleration ae = dve/dt.
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To the first order of the normalized speed (with respect
to c), the propagation range becomes simpler as

R = Rt + Rt · ve/c. (7)

The last term in the preceding formula presents the first-
order Sagnac effect which plays an important role in this
investigation.

We next consider the round-trip propagation where a
wave is emitted from a transceiver, reaches and is reflected
back from a target, and then is received by transceiver.
Suppose that the target and the transceiver move at ve-
locities va and vb with respect to the unique propagation
medium. For the forward path from the
transceiver to the target, the propagation range can be
given by (6), where ve is replaced by va and Rt is under-
stood to be the geometric distance from the transceiver to
the target at the instant of wave emission. The propaga-
tion range for the backward path from the target to the
transceiver can also be given by (6), where ve is replaced
by vb and Rt is replaced by the geometric distance from
the target to the transceiver at the instant of the wave
striking the target. Thereby, to the second order of 1/c,
it can be shown that the round-trip propagation time τ is
given as [4]

τ =
2Rt

c

{
1 +

1
c
uab

+
1
2c2

[
u2

a + v2
b + v2

ab + (aab − ab) · Rt

]}
, (8)

where vab (= va − vb) is the Newtonian relative velocity
between the target and the transceiver, uab = ua − ub,
aab = aa − ab, radial speed u = v · R̂t, acceleration a =
dv/dt, and Rt, va, vb, aa, and ab are all referred to the
instant of wave emission from the transceiver.

It is noted that the first-order one-way Sagnac effect
given in (7) is associated with the receiver velocity and
tends to be different from the one observed in a frame dif-
ferent from the unique propagation frame. However, the
first-order round-trip Sagnac effect given in (8) is associ-
ated with the relative velocity and hence is independent
of the reference frame chosen. For the round-trip case, the
dependence on the reference frame emerges in the second-
order Sagnac effect. These frame-dependent terms will be
used to explore the existence and identity of the unique
propagation frame of the electromagnetic wave, which is
the key issue of this investigation.

3 Propagation models and Sagnac effects
in high-precision experiments

In this section, we examine propagation formulas actu-
ally adopted in GPS, the intercontinental microwave link,
and in the interplanetary radar. These high-precision ex-
periments depend on wave propagation in a quite direct
way and can provide crucial tests for a propagation model.
Bear in mind that the path length is frame-independent,

although some reference frames can be more convenient
from a given viewpoint. The classical propagation range
should be referred specifically to the unique propagation
frame, when it is understood to be given simply as R = τc.
Conversely, the frame in which the propagation range is
related to the propagation time in this familiar form is
just the unique propagation frame of the classical model.

3.1 GPS

Recently, by virtue of its high accuracy in positioning,
GPS has been put in everyday practice ubiquitously [5–
11]. The NAVSTAR GPS employs about 24 non-geosta-
tionary (half-synchronous) satellites carrying highly pre-
cise and synchronized atomic clocks around six nearly cir-
cular orbits of a radius of about 26,600 km [5,9]. Each
GPS satellite repeatedly broadcasts a microwave carrying
a sequence of its own unique codes which can be used to
determine the time of signal emission. At the user site, the
receiver generates a synchronous replica of the codes and
compares it with the received one. Then the shift between
the two sequences of codes corresponds to the measured
propagation time which, when multiplied with the speed
c, is called the pseudorange which in turn corresponds to
the propagation range in the ideal case.

Quantitatively, the satellite position rs at the instant
t′ of signal emission is determined from the instant t of
signal reception, the propagation time τ , and the satellite
ephemeris constants. Then the position re of a geostation-
ary receiver at the instant of signal emission is related to
the satellite position rs at this instant implicitly by the
pseudorange formula:

R = Rt + Rt · (ω̄E × re)/c = Rt + 2S · ω̄E/c, (9)

where R (= τc) presents the pseudorange, position vec-
tors re and rs are referred to the earth’s center, ω̄E is
the directed earth’s rotation rate, and S (= rs × re/2)
denotes the directed area of the triangle with vertices at
the satellite, the receiver, and earth’s center [7,8,10]. The
term associated with earth’s rotation rate is known as the
GPS Sagnac correction in pseudorange. After measuring
a set of pseudoranges from different satellite transmitters
to a ground receiver, the receiver position re can be found
by solving a set of nonlinear equations processed with co-
ordinates transformation from the preceding pseudorange
formula. For a terrestrial receiver, it is convenient to ex-
press its position in the ECEF (earth-centered earth-fixed)
frame which rotates with the earth. Then the longitude,
latitude, and altitude of the GPS receiver are calculated.
This process is practiced numerously everyday around the
globe to determine the receiver positions.

For a geostationary receiver, its velocity is zero and
ω̄E × re with respect to the ECEF and an ECI (earth-
centered inertial) frame, respectively, while, if the receiver
velocity is referred to a heliocentric inertial frame or even
to a frame beyond the solar system (say, a galaxy frame),
the earth’s orbital motion should be taken into account in
addition. It is noted that the GPS pseudorange formula (9)
is just the classical propagation-range formula (7), if and
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only if ve = ω̄E×re is adopted for geostationary receivers.
That is, the receiver velocity is referred uniquely to an ECI
frame. Thus earth’s rotation influences the Sagnac effect
in GPS, while earth’s orbital motion does not.

In GPS the actual magnitude of the Sagnac correc-
tion due to earth’s rotation depends on the positions of
satellites and receiver and a typical value is 30m, as the
propagation time is about 0.1 s and the linear speed due
to earth’s rotation is about 464m/s at the equator. The
GPS provides an accuracy of about 10m or better in po-
sitioning. Thus the precision of GPS will be degraded sig-
nificantly, if the Sagnac correction due to earth’s rotation
is not taken into account. On the other hand, the orbital
motion of the earth around the sun has a linear speed of
about 30 km/s which is about 100 times that of earth’s
rotation. Thus the present high-precision GPS would be
entirely impossible if the omitted correction due to orbital
motion is really necessary.

3.2 Intercontinental microwave link

In an intercontinental microwave link between Japan and
the USA via a geostationary satellite as relay, the influence
of earth’s rotation is also demonstrated in a high-precision
time comparison between the atomic clocks at two remote
ground stations [12].

In this transpacific-link experiment, a synchronization
error of as large as about 0.3µs was observed unexpect-
edly. After a detailed analysis, the synchronization error
in this two-way microwave link is found to be proportional
to the sum of the projected areas of two triangles similar
to that discussed in GPS and is ascribed to the ignored
shift in propagation time. This shift in the two-way link
depends on the differences in longitude between the two
stations and the satellite. In the microwave link between
the two neighboring countries of Japan and Korea, a sim-
ilar but smaller shift in propagation time of about 40 ns
has also been observed [13]. Evidently, as in GPS, the
propagation-time shift in the two-way microwave link is
associated with the Sagnac effect due to earth’s rotation.

Meanwhile, as in GPS, no effects of earth’s orbital mo-
tion are reported in these links, although they would be
easier to observe if they are in existence. Thereby, it is ev-
ident that the wave propagation in GPS or the interconti-
nental microwave link depends on the earth’s rotation, but
is entirely independent of earth’s orbital motion around
the sun or whatever. As a consequence, the propagation
mechanism in GPS or intercontinental link can be viewed
as classical in conjunction with an ECI frame, rather than
the ECEF or any other frame, being selected as the unique
propagation frame. In other words, the wave in GPS or the
intercontinental microwave link can be viewed as propa-
gating via a classical medium stationary in a geocentric
inertial frame.

3.3 Interplanetary radar

By using a high-power microwave transmitter (typically,
1MW) and a high-directivity antenna (typically, 50 dB),

radar observations of planets in the solar system have been
achieved. In the interplanetary radar, a microwave signal
is sent from an earthbound antenna to a target planet or a
spacecraft and then the reflected wave is collected by the
earthbound antenna. From the literature the targets with
which the microwave radar has been demonstrated include
Venus [14–18], Mercury [16–18], Mars [19], interplanetary
spacecrafts [20], and others [21].

By processing the returned signal with duplicates of
the transmitted one, the radar echo delay time can be
measured to a high precision. For interplanetary radar,
the echo delay time is of the order of 1000 s, while the
uncertainty in the echo-time measurement is limited to
about 100µs [16]. Part of the uncertainty is due to the
surface roughness of the target planet.

Meanwhile, based on the planetary positions which as
functions of time are determined elaborately by solving
the coupled equations of planetary motion numerically in
conjunction with suitable planetary ephemeris constants,
the interplanetary round-trip propagation time is calcu-
lated. By comparing the predicted results with the mea-
sured data of radar echo time, high agreements are re-
ported. Typically, the agreement of the echo-time compar-
ison is about a few hundred microseconds [14,22]. Part of
the disagreement is due to the uncertainty in the adopted
ephemeris constants.

An examination of the adopted propagation formulas
shows that the round-trip propagation time is the sum of
the propagation ranges of the forward and the backward
paths divided by the speed of light c, where the forward
propagation range is the distance from the position of the
transmitting antenna at the instant of wave emission to
that of the reflecting part on the target planet at the in-
stant of reflection and the backward propagation range is
the distance from the reflecting part to the position of the
receiving antenna at the instant of reception. Quantita-
tively, the adopted formula described clearly in [14,15,21]
shows that the round-trip propagation time is given by

τ = τf + τb =
1
c
|ra(t′) − rb(t′′)| + 1

c
|rb(t) − ra(t′)|, (10)

where τf and τb denote the propagation times for the
forward and the backward paths, respectively, ra and rb
are the position vectors of the target and the transceiver,
respectively, t′′, t′ and t denote the instants of the sig-
nal being emitted, reflected, and received, respectively,
τf = t′ − t′′, and τb = t − t′. (For the reflection from
the surface of a target planet of radius RP , an amount of
2RP /c should be subtracted from the echo time, as the
target position vector ra is assigned to the center of the
planet [15].) Owing to the movement of the target dur-
ing the forward propagation time τf and to that of the
transceiver during the backward one τb, the position vec-
tors ra(t′) and rb(t) depend on τf and τb, respectively.
Thus the propagation times given in the preceding for-
mula are implicit and are solved iteratively.

It is noted that the preceding echo-time formula is in
accord with the classical propagation-range formula (2),
aside from the reference frame. Further, as stated explic-
itly in most of the literature, the position vectors ra and
rb are based on a heliocentric inertial frame. Needless to
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say, a heliocentric frame is convenient in dealing with the
position vectors of the associated planets under the influ-
ence of gravity due to the sun. More significantly, an im-
plication is that the wave propagation is referred uniquely
to this heliocentric frame. Note that if this is actually the
case, the unique propagation frame of the interplanetary
radar is then different from that of GPS and the inter-
continental microwave link. However, whether the unique
propagation frame of interplanetary radar is really a he-
liocentric inertial frame is subject to a careful verification
by comparing the measured echo time with the predicted
result based on the proposed frame to an appropriate ac-
curacy.

For this verification, it is more instructive to express
the echo time explicitly. To the second order, the explicit
formula of echo time has been given in (8). From this it
is seen that owing to the round-trip path, the first-order
Sagnac effect depends on the relative velocity and hence
is invariant when observed in different frames. In other
words, no frame is preferred for this round-trip effect as-
sociated with the relative velocity. Thus, unlike that in
GPS, the major term of the Sagnac effect cannot be used
to determine the uniqueness of the propagation frame.
However, the radial speed of the target, the speed of the
transceiver and their accelerations survive in the second-
order terms. The determination of the unique propaga-
tion frame then relies on these second-order Sagnac effects,
which are much smaller in magnitude. Hence the required
accuracy is much higher.

From the explicit formula, a calculation immediately
shows that the acceleration due to earth’s rotation corre-
sponds to about 100µs in interplanetary echo time, which
is comparable to the aforementioned agreement of echo-
time comparison. Thus, as in GPS, earth’s rotation should
affect the interplanetary propagation and hence the ECEF
frame is ruled out. On the other hand, when observed in
a galaxy frame, the speeds of transceiver and target will
incorporate the one due to the orbital motion of the sun,
which is about 220 km/s. Thus the squared normalized
speeds are as large as of the order of 10−6. If this motion
affects the interplanetary radar experiments, the corre-
sponding influences on the echo time would be as large as
of the order of 1ms. This is clearly beyond the accuracy
and hence a galaxy frame is also ruled out.

However, when observed in either a geocentric or a
heliocentric frame, the squared normalized speeds in in-
terplanetary radar are at most of the order of 10−8. The
potential contributions to interplanetary echo time are of
the order of 10µs. Therefore, based on these second-order
terms, it is difficult to discriminate between a geocentric
and a heliocentric inertial frame, when the comparison
agreement remains a few hundred microseconds. In order
to determine the unique propagation frame from these mi-
nor terms, the fractional agreement of echo-time compar-
ison should be better than 10−8.

More recently, interplanetary radar with the echo sig-
nal transponded by a spacecraft has been achieved and the
corresponding precision of the measured echo time can be
as high as 0.1µs or better [20,19]. After processing a large
number of high-precision measured data to fit the the-
oretical formula with some undetermined parameters by

the least-square algorithm, an agreement of the echo-time
comparison of as high as about 1µs or better has been
achieved over a long duration of several months [20,19].
Thereupon, as the reference frame adopted in the echo-
time formula is referred to a heliocentric inertial frame,
the unique propagation frame of the interplanetary radar
is then attributed to this frame.

Thereby, the measured and the calculated echo times
are in agreement, if the propagation mechanism in the
interplanetary radar is viewed as classical in conjunction
with that a heliocentric inertial frame, rather than an ECI
or any other frame, is selected as the unique propagation
frame. In other words, the wave in the interplanetary radar
can be viewed as propagating via a classical medium sta-
tionary in a heliocentric inertial frame.

4 Discrepancy in effect of earth’s motion

In some of the literature the Sagnac effect is ascribed to
a relativistic effect [7,13,23]. It is known that the spe-
cial relativity is based on two postulates. The first one is
the principle of relativity which states that no reference
frames in uniform translatory motion are preferred [24].
On the contrary, the classical propagation model presumes
a unique propagation frame to which the position vectors,
the propagation range, the propagation speed, and the re-
ceiver velocity are referred. The second one is the principle
of the constancy of the speed of light which states that the
speed of light is independent of the motion of source. It
is noted that this principle is actually in accord with the
classical propagation model. Thus the propagation-range
formulas adopted in GPS, the intercontinental microwave
link, and the interplanetary radar are identical to the clas-
sical one, aside from the reference frame.

Based on the classical propagation model, it has been
determined deliberately in the preceding section that the
unique propagation frame is a geocentric and a heliocen-
tric inertial frames for GPS and the interplanetary radar,
respectively. When the receiver is moving with respect to
the determined propagation frame, the Sagnac effect re-
sults from the difference between propagation range and
path length. From this point, the Sagnac effect has nothing
to do with the Lorentz transformation of space and time.
An obvious reason is that the Sagnac effect incorporates
the first order of the normalized speed, whereas the time
dilation or the length contraction is merely of the second
order. Further, if a propagation is referred to a frame dif-
ferent from the determined frame, the propagation-range
formula (7) will lead to a propagation time imposed with
an extra first-order term associated with the relative ve-
locity between the two frames, in addition to the Sagnac
effect. If no reference frame is preferred, it is puzzling to
figure out how this extra first-order term can be compen-
sated by resorting to the Lorentz transformation when ob-
served in a different frame in uniform translatory motion.

Although the principle of relativity has been exten-
sively verified in classical mechanics, such as in the con-
servation of momentum or kinetic energy, it is not really
tested in the case of propagation of an electromagnetic
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wave. Although GPS and intercontinental microwave links
are commonly claimed to follow special relativity, the ref-
erence frame that has been actually adopted is an ECI
frame only. The ECEF frame is ruled out by reason of the
noninertial effects of a rotating frame [7]. Meanwhile, a
heliocentric or galaxy frame is also ruled out for the rea-
son of the locally Lorentzian principle [7]. Not any other
frame has been really tested in GPS, such as the frame
which moves at a fixed velocity with respect to an ECI
frame. Perhaps, this frame can also be ruled out by some
ignored principle. While, if these reasonings are applied
consistently to the Michelson–Morley experiment, then
its famous null result should be reexamined based on an
ECI frame. Moreover, it is noted that under a space-time
transformation in which time is not frame-independent,
the echo-time comparison in the interplanetary radar ex-
periments seems to need a transformation. This is because
while the calculation of echo time is referred to a helio-
centric frame, the measurement of echo time only involves
the clocks of ground stations and hence is expected to be
associated with a frame as that in the case of an intercon-
tinental link. However, this transformation has not been
reported, to our knowledge.

These arguments on the grounds of special relativity
may be disputable. Anyway, the key point is that these
high-precision experiments and other related propagation
phenomena can be well accounted for by the classical prop-
agation model if the unique propagation frame is suitably
selected. The GPS and intercontinental microwave link are
in accord with the classical propagation mechanism in con-
junction with the unique propagation frame being an ECI
frame. Thereby, the Sagnac effect based on the classical
model without invoking any particular space-time trans-
formation is in excellent accord with these experiments to
the first order of normalized speed. Moreover, the inter-
planetary radar is in accord with the classical propagation
mechanism in conjunction with the unique propagation
frame being a heliocentric inertial frame.

As the unique propagation frame in interplanetary
radar is a heliocentric inertial frame, both the rotational
and the orbital motions of the earth together with the or-
bital motion of the target planet contribute to the Sagnac
effect. But the orbital motion of the sun has no effects
on the interplanetary propagation. On the other hand, as
the unique propagation frame in GPS and intercontinental
links is a geocentric inertial frame, the rotational motion
of the earth contributes to the Sagnac effect. But the or-
bital motion of the earth around the sun and that of the
sun have no effects on the earthbound propagation. By
comparing GPS with interplanetary radar, it is seen that
there is a common Sagnac effect due to earth’s rotation
and a common null effect of the orbital motion of the sun
on wave propagation. However, there is a discrepancy in
the Sagnac effect due to earth’s orbital motion. Moreover,
by comparing GPS with the widely accepted interpreta-
tion of the Michelson–Morley experiment, it is seen that
there is a common null effect of the orbital motions on
wave propagation, whereas there is a discrepancy in the
Sagnac effect due to earth’s rotation.

It is noted that an interplanetary radar experiment
can be viewed as a microwave link via a planet or a space-

craft as relay, while its unique propagation frame is dif-
ferent from that in the intercontinental link. Thus, for a
spacecraft before or just after its launch, the propagation
of the microwave by which the ground station commu-
nicates with it is referred to a geocentric inertial frame,
while, as the spacecraft flies far away on its journey to
another planet, the propagation reference switches to a
heliocentric inertial frame. Therefore, it is evident that
the propagation mechanism in a microwave link depends
on the location of the relay.

Thus it is concluded that the examined high-precision
experiments are in accord with the classical propagation
model in conjunction with a unique propagation frame
which is switchable, depending on the location of the wave:
earthbound or interplanetary. Based on this characteristic
of uniqueness and switchability of the propagation frame,
we propose in the following section the local-ether model
of wave propagation to solve the discrepancies in the in-
fluences of earth’s rotational and orbital motions on the
Sagnac effect and to account for a wide variety of propa-
gation phenomena.

5 Local-ether model of wave propagation

Imagine that in the universe the ether prevails everywhere.
However, the ether does not integrate wholly to form one
single universal medium for wave propagation. Instead,
there exist numerous local ethers. Each individual local
ether is finite in extent and may be wholly immersed in
another local ether of larger extent. Each local ether as
a whole may move at a velocity with respect to another
local ether. Thus the local ethers may form a multiple-
level hierarchy. At a given position, it is the lowest-level
local ether that determines the wave propagation locally.
For an electromagnetic wave propagating within a single
local ether, it is proposed that as in the old ether notion,
the propagation speed with respect to the associated lo-
cal ether is just the speed of light c, independent of the
motions of source and receiver.

This new classical propagation model made its debut
in [25]. The physical nature of the local ether is yet to be
explored. Like the familiar fact that a volume of air or a
membrane which propagates a mechanical wave is com-
posed of numerous molecules or ions, a local ether which
propagates electromagnetic wave could be composed of
some undetected kind of tiny interacting particles much
smaller than the electron in size. It is expected to be asso-
ciated with the gravity of a celestial body. Anyway, some
mechanisms tend to integrate the ether surrounding a ce-
lestial body. Thus the nearby ether will move with the
body. This situation is somewhat like that of a moving
balloon that tends to drag some air to move with it or like
the ether-drag hypothesis proposed a long time ago [2].
Thereby, a local ether associated with that celestial body
is formed.

Specifically, it is proposed that in the region under suf-
ficient influence of the gravity due to the earth, the sun,
or another celestial body there forms a local ether which in
turn is stationary with respect to the gravitational potential
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of the respective body. Thereby, each local ether together
with the gravitational potential moves with the associ-
ated celestial body. According to this model, the earth
local ether is inside the sun local ether, which in turn is
inside the galaxy local ether, and so on. The earth local
ether together with earth’s gravitational potential moves
with earth’s orbital motion around the sun, but not with
earth’s rotation. Thus the earth local ether is stationary in
an ECI frame, but not in the ECEF or any other frame,
while the sun local ether is stationary in a heliocentric
inertial frame.

Based on the classical propagation model, whether the
motion of a receiver contributes to the Sagnac effect de-
pends on whether this motion is incorporated in the move-
ment of the receiver with respect to the propagation
medium. In other words, if a receiver and the propagation
medium are undergoing a common motion, then the prop-
agation is entirely independent of this motion. Based on
the local-ether model, for the case where both the source
and the receiver are bounded to the solar system, the in-
terplanetary propagation is entirely independent of the
motion of the sun with respect to upper-level local ethers,
such as the orbital motion of the sun in the galaxy. Fur-
ther, for the case where both the source and the receiver
are bounded to the earth, the propagation medium is sta-
tionary in an ECI frame and the earthbound propagation
is entirely independent of the orbital motions of the earth
and the sun.

Consider the Sagnac effect for a geostationary receiver.
Based on the local-ether model, the velocity of a geosta-
tionary receiver that contributes to the Sagnac effect is
apparently not zero. Further, it is noted that the receiver
velocity and hence the Sagnac effect depend on the loca-
tion of the source. If the source is also earthbound, the
propagation path is then earthbound and the Sagnac ef-
fect is due to earth’s rotation alone, while, if the source is
located outside the earth local ether, the calculation of the
propagation time is more complicated. For the interplane-
tary propagation where the wave is radiated from the sun,
a planet, or a spacecraft, the major part of the propaga-
tion path is located in the sun local ether. The calculation
can be simplified, if the propagation in the minor earth
local ether is approximated to that in the main sun local
ether. Anyway, the interplanetary Sagnac effect is due to
earth’s orbital motion around the sun as well as earth’s
rotation. Further, for the interstellar propagation where
the source is located beyond the solar system, the orbital
motion of the sun contributes to the interstellar Sagnac
effect as well.

Evidently, as expected, the proposed local-ether model
accounts for the Sagnac effect due to earth’s rotation and
the null effect of earth’s orbital motion in the earthbound
propagations in GPS and intercontinental microwave link
experiments. Meanwhile, in the interplanetary radar, it ac-
counts for the Sagnac effect due both to earth’s rotation
and to earth’s orbital motion around the sun. Moreover,
it accounts for the null effect of orbital motion of the sun
both in earthbound and interplanetary propagations. Fur-
thermore, the local-ether model can be used to account for
the Michelson–Morley experiment and various other prop-
agation phenomena, as discussed in the following section.

6 Reexaminations
of various propagation phenomena

In this section, we discuss wave propagation in monostatic
radar experiments, the Michelson–Morley experiment, and
in loop interferometry and examine the constancy of the
speed of light and the spatial isotropy of the propagation
time. Then we discuss the Doppler effect and the related
phenomena in Roemer’s observations and CMBR (cosmic
microwave background radiation). Finally, we explore the
gravitational effects due to the sun on the light deflection
and the shift of the interplanetary radar echo time. Of the
various phenomena to be discussed, the main propagation
medium varies from the earth to the sun local ether, and
to that beyond the solar system.

In the various propagation formulas to be discussed,
both the individual velocities of source, target, and of re-
ceiver and the Newtonian relative velocities among them
are incorporated. Those terms incorporating only relative
velocities are independent of the reference frame and hence
cannot be used to determine the unique propagation frame
unequivocally, whereas those terms incorporating the in-
dividual velocity, such as the Sagnac effect in GPS, will
in general lead to different predicted results if the chosen
reference frame is different from the unique propagation
frame. Therefore, an examination on the reference frame
of the individual velocity may provide a test for the propa-
gation model. However, the individual-velocity terms may
become second or higher order due to some symmetry in
propagation. Thus these terms can be difficult to detect
or even undetectable. Nevertheless, the various propaga-
tion phenomena may provide auxiliary evidence for the
propagation model.

6.1 Round-trip Sagnac effect
in monostatic radar experiments

Consider the round-trip propagation in the monostatic
radar system composed of a transceiver and a target. For
an earthbound radar, the round-trip propagation time τ is
quite short and the resolution in echo-time measurement
is limited. Thus it normally suffices to use the first-order
radar echo time simplified from (8) to

τ =
2Rt

c

(
1 +

uab

c

)
. (11)

It is noted that the first-order echo time involves only
the Newtonian relative velocity and hence is independent
of the reference frame of the velocities. This first-order
formula agrees with the corresponding radar phase shift
given in [26,27]. No second-order Sagnac effect in earth-
bound radar experiments is reported in the literature, to
our knowledge.

6.2 Round-trip Sagnac effect
in Michelson–Morley experiment

Then we proceed to consider the Michelson–Morley ex-
periment dealing with the interference between two light
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beams in two orthogonal propagation paths formed by
beam splitter and mirror. In each of the two optical arms,
light propagates from the beam splitter to a mirror and
back. Thus the propagation in each arm is like that in
a monostatic radar with the beam splitter and the mir-
ror serving as the transceiver and the target, respectively.
Similarly, the Sagnac effect is of round-trip nature. Fur-
ther, since the mirror always moves with the beam splitter,
the propagation-time formula can be even simpler.

For the case where the target is moving with the
transceiver (va = vb) and their accelerations can be ne-
glected, the round-trip propagation time (8) becomes sim-
pler, namely

τ =
2Rt

c

{
1 +

1
2c2

(
u2

b + v2
b
)}

. (12)

It is noted that the first-order Sagnac effect due to the
relative motion between transceiver and target vanishes
in the preceding relation. Thus in each optical arm in
the Michelson–Morley experiment, the round-trip prop-
agation time given to the second order of the normalized
speed becomes

τ =
2Rt

c

{
1 +

v2

2c2 (1 + cos2 θ)
}

, (13)

where v is the velocity of the interferometer with respect
to the local-ether frame, Rt is the path length between the
beam splitter and the mirror in each optical path, and θ
is the angle between v and Rt.

The difference in round-trip propagation time between
the two arms corresponds to a phase difference, which in
turn can manifest itself as an interference fringe pattern
by suitably arranging the arms. As the interferometer is
rotating, the two values of angle θ and hence the two prop-
agation times will vary. Consequently, a variation in the
interference fringe can be observed if the variation in the
phase difference is large enough.

Based on the local-ether model, the propagation is en-
tirely independent of the earth’s orbital motion around
the sun or whatever and the velocity v for such an earth-
bound experiment is referred to an ECI frame and hence
is due to earth’s rotation alone. In the original proposal,
the velocity v was supposed to incorporate earth’s or-
bital motion around the sun. Thus, at least, v2/c2 �
10−8. Then the amplitude of the phase-difference varia-
tion could be as large as π/3, when the wavelength is
0.6µm and the path length is 10m. However, as the ve-
locity v is the linear velocity due to earth’s rotation alone,
the round-trip Sagnac effect is as small as v2/c2 ∼ 10−12,
which is merely 10−4 times that due to the orbital motion.
Thereby, based on the local-ether model, the variations in
the round-trip propagation times are not exactly zero, but
are currently too small to detect. In the common under-
standing, the null effect of orbital motion is extrapolated
without direct evidence to rule out the effect of earth’s
rotation on wave propagation, as in Einstein’s original
paper of the special relativity where it is assumed that
τ = 2Rt/c [24]. Thereupon, this local-ether interpretation
of the Michelson–Morley experiment is fundamentally dif-
ferent from that based on the special relativity.

From the examined high-precision propagation exper-
iments, it is found that the proposed local-ether model
is in accord with all these experiments, except the un-
determined Sagnac effect due to earth’s rotation in the
Michelson–Morley experiment. Since a correct propaga-
tion model should consistently account for the Michelson–
Morley experiment, GPS, intercontinental microwave link,
and interplanetary radar measurements, we deliberate
more on this round-trip Sagnac effect.

From physical reasoning, it is expected that the prop-
agation mechanism in the Michelson–Morley experiment
in no way can be different from that in GPS and earth-
bound microwave link experiments, from the standpoint of
any plausible propagation model. The null effect of earth’s
orbital motion in the Michelson–Morley experiment re-
flects no Sagnac correction due to this motion in the GPS
pseudorange. On the other hand, the Sagnac effect due to
earth’s rotation in the high-precision GPS and intercon-
tinental microwave link should reflect a non-null effect of
earth’s rotation in the Michelson–Morley experiment. The
difficulty in the Michelson–Morley experiment is that this
effect becomes a term of the second order of the normal-
ized speed, owing to the round-trip path and the lack of
relative motion between transceiver and target.

The accuracy of the interferometry experiment may be
improved by using a laser heterodyne system, where the
propagation path is formed in a resonant cavity. If the res-
onance frequency of the cavity is shifted due to some mech-
anisms, the shift will manifest itself as a variation in the
beat frequency, as the laser from the cavity is compared
with a reference wave. According to the classical propaga-
tion model, the resonance frequency of a cylindrical cavity
resonator is inversely proportional to the round-trip prop-
agation time over the propagation path along the cylinder
axis. Thus the motion of the cavity with respect to the
unique propagation frame tends to affect the round-trip
propagation time and hence the resonance frequency.

The shift in propagation time can manifest itself as
a corresponding variation in beat frequency between two
waves from two perpendicular cylindrical cavities [28] or
between a wave from a single cavity and a reference wave
from a stable source [29,30]. Then, based on the local-
ether model, the second-order round-trip Sagnac effect
due to earth’s rotation results in a quadrupole anisotropy
in the resonance frequency of a cylindrical cavity, as the
direction of cavity is changing. That is, the resonance fre-
quency is the lowest when the axis of the cavity points in
the east–west direction; it is the highest when it is in the
north–south direction.

As the cavity is rotating slowly with respect to the
ground in a horizontal plane, the beat frequency is ex-
pected to vary sinusoidally at twice the turntable rotation
rate. Moreover, the peak-to-peak amplitude ∆fmax for the
case of a single cavity can be found from the round-trip
propagation time given in (13) as

∆fmax

f
=

v2
E

2c2 � 1.2 cos2 θl × 10−12, (14)

where vE = ωERE cos θl is the linear speed due to earth’s
rotation with respect to an ECI frame, RE is earth’s ra-
dius, and θl is the latitude.
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Such a heterodyne system using a stable He–Ne laser
at 3.39µm (f = 0.88× 1014 Hz) and a stable Fabry–Perot
resonator has been developed [29]. According to the local-
ether model, the amplitude ∆fmax is expected to be 62Hz,
as the cavity heterodyne experiment is supposed to be con-
ducted at a latitude of 40◦. In the measured data, a term
varying at the expected rate has been reported. However,
the peak-to-peak amplitude of this term is merely about
17× 2Hz and was attributed to a persistent spurious sig-
nal among other larger noises. It seems too early to make
a decisive conclusion from this experiment. A more careful
experiment is anticipated to test the second-order round-
trip Sagnac effect supposed due to earth’s rotation.

6.3 Sagnac effect in loop interferometer

The aforementioned first-order Sagnac effect was first ob-
served in a loop interferometer, where two coherent waves
propagating in opposite directions around a closed prop-
agation path formed by a beam splitter and mirrors in
air. Although the paths for the two waves are identical
in structure, the propagation ranges can be different ow-
ing to the Sagnac effect associated with the movement
of propagation path. The corresponding phase difference
then results in an interference fringe, which was first ob-
served in 1913 by Sagnac by using a rotating interferom-
eter. Then in 1925 Michelson and Gale demonstrated the
Sagnac effect due to earth’s rotation by constructing a geo-
stationary loop interferometer enclosing an area as large
as 0.2 km2 [31].

To derive this Sagnac effect, consider for simplicity a
propagation loop which is circular of radius a and is ro-
tating about the center axis with a rotation rate ωl. Thus,
based on the propagation-range formula (5), for the co-
propagating and the counterpropagating waves traversing
the rotating loop once (from entering the loop via the
beam splitter to exiting from the same splitter), the ac-
tual propagation ranges are 2πa ± ωlaτ rather than 2πa,
where τ is the respective propagation time. Thus the dif-
ference between the two propagation times is given by

∆τ =
2πa

c − ωla
− 2πa

c + ωla
� 4πωla

2

c2 , (15)

which is proportional to the area enclosed by the loop
times the rotation rate.

For the general case, consider a coplanar propagation
loop L which is of arbitrary shape and is rotating about
an axis at an arbitrary location with an arbitrary di-
rected rotation rate ω̄l. For the two waves copropagating
and counterpropagating with the rotating loop, the di-
rected path length Rt in each linear short segment of the
loop is along the longitudinal l̂ direction of this segment,
namely, R̂t = ±l̂. As given in [3], by using the first-order
propagation-range formula (7), the propagation-time dif-
ference between the two waves traversing the loop once
can be given by the path integral (or by summation for a
piecewise connected loop):

∆τ =
1
c2

∮
L

{(
c + ω̄l × r · l̂

)
−

(
c − ω̄l × r · l̂

)}
dl

=
2
c2

∮
L

ω̄l × r · dl, (16)

where dl = l̂dl, dl is a differential path length, and the
directed distance r is measured from the axis to the var-
ious point around the path L. By using a vector identity
and by remarking that the directed area S enclosed by
the path L is

S =
1
2

∮
L

r×dl, (17)

the propagation-time difference can be written to the first
order of the normalized speed as

∆τ =
4
c2 ω̄l·S. (18)

It is noted that the corresponding phase difference is pro-
portional to the rotation rate times the projected loop
area.

It is noted that the major terms in the two propaga-
tion times cancel each other and only the Sagnac terms
survive in the interference. This situation makes it eas-
ier to observe the Sagnac effect by this interferometry.
This phase difference has been demonstrated in a rotating
interferometer as well as in a geostationary one. In the
latter case, the Sagnac effect is due solely to earth’s rota-
tion with ω̄l = ω̄E. The earth rotation rate ωE is about
2π/(86400 s) and the corresponding maximum phase dif-
ference is as large as 2 rad, when the wavelength is 0.6µm
and the loop area S = 0.2 km2. Thus, a loop interferom-
eter can be utilized as a precise means to detect earth’s
rotation rate.

Moreover, according to the local-ether model, earth’s
orbital motion around the sun or others does not con-
tribute to the Sagnac effect in an earthbound propaga-
tion loop. In as early as 1904 Michelson supposed that
the Sagnac effect due to the orbital motion of the earth
around the sun might be detectable, although the angular
speed of the orbital motion is about 1/365 times that of
the rotation [31]. However, this idea has never been fol-
lowed up to our knowledge and is ascribed to the principle
of local Lorentz invariance [31].

6.4 Constancy of speed of light

According to the classical model, the propagation speed is
entirely independent of the source velocity. Thus, without
resorting to any mathematics, it is seen that the local-
ether model is obviously in accord with the constancy of
the speed of light from binary stars, in spite of the fact
that they tend to move at considerably different speeds
with respect to an observer on the ground [32].

Moreover, the local-ether model is in accord with the
constancy of the speed of light observed in gamma rays
from the synchrotron radiation of high-energy electrons
[33] and from the decay of high-energy semistable π0

mesons [34]. In the practice of these experiments, the ge-
ometric distance between two separated gamma-ray de-
tectors divided by the measured delay time between them
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is adopted as the propagation speed. This practice im-
plies that the Sagnac effect is omitted tacitly and the path
length is taken to be the propagation range. Accordingly,
as discussed previously, the calculated propagation speed
involves the velocity of the detectors with respect to the
local-ether frame, while it is entirely independent of the
velocity of the emitting particle. In these terrestrial exper-
iments with geostationary detectors, the receiver speed is
due to earth’s rotation alone. Obviously, this speed is rel-
atively too low to be observed and hence the calculated
propagation speed is substantially identical to c.

6.5 Spatial isotropy in geostationary path or cavity

Consider the experiment of a one-way fiber link, where the
phase difference between two waves generated from two
identical stable hydrogen masers at 100MHz separated by
a distance of 21 km and linked by a stable optical fiber was
measured by using a network analyzer every a few seconds
during a couple of days [35]. It has been found that the
phase difference between the two waves is highly stable,
hour by hour and day by day. Thus a spatial isotropy is
observed in the one-way fiber link, as the phase difference
is stable regardless of earth’s rotational or orbital motion.

According to the local-ether model, the propagation
time for this terrestrial experiment is obviously indepen-
dent of earth’s orbital motion. Further, the propagation
time τ implied in (4) can be written implicitly as

τ =
1
c

√
R2

t + 2Rt · vEτ + v2
Eτ2, (19)

where vE is the linear velocity due to earth’s rotation and
represents the velocity of a geostationary path with re-
spect to an ECI frame. As the propagation path is a fiber
link rather than a free space, the propagation speed c in
the preceding formula has to be modified. Moreover, as
the link could be curved, the propagation time has to be
determined by summing the terms given by the preceding
formula over the link, with Rt representing the directed
length of each linear short segment of the fiber link. Any-
way, as long as the fiber link is geostationary, both the dot
product Rt ·vE and the speed vE for each segment are in-
variant under earth’s rotation, although the directed path
length Rt and the velocity vE themselves do change con-
tinuously with earth’s rotation. Consequently, the Sagnac
effect due to earth’s rotation and hence the propagation
time are invariant under earth’s rotation. Thereby, the
proposed local-ether model is in accord with the spatial
isotropy associated with the phase stability in the one-
way-link experiment.

A similarly spatial isotropy has been demonstrated in
the Kennedy–Thorndike experiment which deals with the
interference between two paths different in length and
shape [36]. Since the interferometer is geostationary, it
can be expected that as in the one-way fiber link, the
propagation time in each path is invariant under earth’s
rotation. Therefore, the phase difference between the two
paths is also invariant under earth’s rotational and orbital
motions.

The spatial isotropy has also been demonstrated in a
laser heterodyne experiment with a geostationary cavity
to a high precision [37]. As in the one-way fiber link, the
round-trip propagation time in a geostationary cavity is
invariant under earth’s rotation. Therefore, the resonance
frequency of this cavity and hence the beat frequency are
invariant under earth’s rotational and orbital motions. As
discussed previously, a breakdown in the isotropy can be
expected when the orientation of the path or cavity is
changed with respect to the ground.

6.6 Doppler frequency shift and Roemer’s observations

Consider the Doppler effect for the case where the source
is periodically emitting a wave and is moving with respect
to the receiver. Suppose that the source and the receiver
are moving at velocities vs and ve, respectively. Due to the
relative motion between the transmitter and the receiver,
the rate of reception tends to be different from that of
emission. The received time difference ∆t between two
signals transmitted with a differential time difference ∆t′
is given in terms of the difference in the propagation range
by

∆t = ∆t′ +
R(t′ + ∆t′)

c
− R(t′)

c
, (20)

where R(t) denotes the propagation range for the wave
emitted at an arbitrary instant t. Then the time differences
∆t and ∆t′ and hence the received frequency fr and the
transmitted frequency ft are related by

ft

fr
=

∆t

∆t′
= 1 +

dR

cdt
, (21)

where the time derivative of the propagation range is eval-
uated at the instant of wave emission. It is seen that
the Doppler frequency shift is due to the time rate of
the change of the propagation range and hence the ref-
erence frame of the Doppler effect is identical to that of
the Sagnac effect and the propagation range.

Based on the first-order propagation-range formula
(7), the Doppler frequency relation is given by

ft

fr
= 1 +

d
cdt

{
Rt

(
1 +

ue

c

)}

= 1 +
dRt

cdt
+

d
c2dt

(ve · Rt). (22)

Due to the relative motion between source and receiver,
dRt/dt = ves and hence dRt/dt = ues, where ves (=
ve−vs) is the Newtonian relative velocity between receiver
and source at the instant of emission, ues (= ue−us) is the
radial speed of the receiver with respect to the source, and
velocities vs and ve are referred to the local-ether frame.
As given in [3], to the second order, the Doppler formula
becomes

ft

fr
= 1 +

ues

c
+

ve · ves

c2 +
ae · Rt

c2 . (23)
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It is noted that the second-order Doppler effect is due
to the first-order Sagnac effect. Moreover, the transverse
components of the velocities are involved in the second-
order Doppler shift. The inverse frequency ratio given to
the second order is

fr

ft
= 1 − ues

c
− ve · ves

c2 − ae · Rt

c2 +
u2

es

c2 . (24)

This Doppler formula is quite general in the sense that the
directions of the velocities are arbitrary and the receiver
acceleration has been taken into account. When the accel-
eration ae is zero, the preceding frequency relation agrees
with that derived in [38], aside from a slight difference in
the interpretation of R̂t. For the case of radial relative mo-
tion without acceleration, where the relative velocity ves
is parallel to ±Rt and hence ve ·ves = ueues, the frequency
relation gets the familiar form:

fr

ft
=

1 − ue/c

1 − us/c
. (25)

This agrees with the classical Doppler formula derived in
an alternative way [39].

Ordinarily, it suffices to use the first-order formula
which reads

ft

fr
= 1 +

ues

c
. (26)

It is noted that in this approximation, only the relative
radial speed is involved and the Sagnac effect is wholly ig-
nored. This first-order Doppler formula has been adopted
in GPS for the measurement of the receiver’s velocity [6]
and in the Doppler frequency shift in the spectrum of the
light radiated from stars.

In Roemer’s observations, the apparent time interval
∆t between two successive eclipses of a moon of Jupiter
is expected to vary fractionally as 1 + ues/c, where ues
is the radial speed of the earthbound observer relative to
the moon of Jupiter and incorporates both the rotational
and the orbital motions of the earth. Thus the apparent
eclipse interval is expected to exhibit a diurnal as well as
a seasonal variation. With the astronomical knowledge of
planetary motion in the solar system, the dependence of
the apparent interval ∆t on the normalized speed ues/c
has been used as a pioneering approach to determine the
speed of light.

6.7 Doppler effect in CMBR

Consider the cosmic microwave background radiation,
where the sources are outside the solar system. It has been
found that the measured spectrum of CMBR matches that
of a blackbody radiation at about 2.73K [40]. Further, it
has been found that the blackbody temperature of the
spectrum or simply the antenna temperature (received
power per unit bandwidth) at a particular frequency de-
pends slightly on the direction of reception [40–43]. The
shift in the temperatures exhibits a small dipole distri-
bution with respect to a particular symmetry axis in a

frame beyond the solar system. The cosmic microwave is
known to be radiated from numerous sources which are
distributed around the earth. Further, the various sources
are expected to be stationary with respect to each other;
otherwise, the directional variation in the temperatures
should be more complicated than a dipole distribution.

Based on the local-ether model, these sources then
form an immense local ether which encloses the sun lo-
cal ether. As the sources are stationary with respect to
their local ether, the relative velocity v between the re-
ceiver and the source then becomes the receiver’s velocity
with respect to this CMBR local ether. For an earthbound
receiver, the velocity v incorporates the linear velocity due
to the orbital motion of the sun as well as those due to
earth’s rotational and orbital motions.

According to (26), the first-order Doppler shift is given
by

∆f

ft
= −v

c
cos θ, (27)

where the frequency shift ∆f = fr − ft and θ is the angle
between v and Rt (cos θ = v̂ · R̂t). As the receiver veloc-
ity v remains almost constant over a short measurement
interval during which the direction of receiving antenna
(represented by the direction of −Rt) is scanning, the
Doppler frequency shift then exhibits a dipole anisotropy
cos θ. The frequency shift will be maximum and minimum
when the reception direction is parallel and antiparallel to
the receiver velocity v, respectively.

The frequency shift in turn will result in a propor-
tional shift in the antenna or the blackbody temperature,
as the radiation power depends on frequency. The am-
plitude of the fractional variation in these temperatures
is then given as v/c, which is about 10−3 according to
the data reported in the literature. Thereby, the receiver
speed v with respect to the CMBR local ether is expected
to be about 300 km/s, which incorporates the orbital mo-
tion of the sun together with earth’s rotational and orbital
motions. Thus, as well as the eclipse interval in Roemer’s
observations, the receiver speed v and hence the magni-
tude of the dipole anisotropy are expected to exhibit diur-
nal and, particularly, seasonal variations. Earth’s orbital
motion is expected to affect the dipole amplitude by 10
percent. This seasonal variation has been demonstrated
by comparing two observations separated by six months
[42,43].

In spite that these arguments may sound reasonable,
the first-order Doppler effect is associated with a relative
velocity and hence cannot provide decisive support for
a proposed propagation model. The predicted first-order
Doppler shift based on wave propagation in the proposed
CMBR local ether will be identical to that in another
frame or even to that in the universal ether adopted in
the “new aether drift” [41]. As seen from (24), the individ-
ual velocity of the receiver is incorporated in the second-
order Doppler effect. Thus a crucial test for the local-ether
model can be provided, if the directional anisotropy in the
CMBR temperature can be measured to the second order.
Anyway, the dipole anisotropy in CMBR is in accord with
(or does not deny) the statement that a cosmic wave can
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be viewed as to propagate mainly via a classical medium
stationary in a frame beyond the solar system.

6.8 Gravitational effects on propagation

To make the local-ether model more complete, we consider
the deflection of light by the sun and the increment in in-
terplanetary radar echo time which are commonly known
as important evidences supporting the general theory of
relativity. Based on the local-ether model, we present an
alternative interpretation of these phenomena in a classi-
cal way without invoking the space-time curvature.

It is postulated that in the gravitational potential of
a celestial body, the speed of light decreases slightly from
c to c/ng with respect to this potential and hence to the
local ether of the body, where the gravitational index ng
in turn is proposed to be associated with the gravitational
potential Φg by

ng(r) = 1 +
2
c2 Φg(r) = 1 + 2

GM

c2r
, (28)

where G is the gravitational constant, and r is the radial
distance from the center of the celestial body of mass M .

The increment in propagation time per unit propaga-
tion range is given by (ng −1)/c. By integrating this term
along the path from the source at the instant of wave emis-
sion to the receiver at the instant of reception with respect
to a heliocentric or a geocentric inertial frame, it has been
shown quantitatively [44] that this propagation model is
in accord with the increment in interplanetary radar echo
time as the microwave passing near the sun [18–20] or with
the increment in earthbound GPS propagation time [10,
7], respectively.

Furthermore, it has been shown quantitatively that the
spatial variation of the gravitational index tends to cause
a deflection of the light beam passing near a celestial body
[44]. This situation is similar to the total internal reflec-
tion of a short wave from the ionosphere of which the
refractive index is varying with altitude. Thus the local-
ether model is in accord with these gravitational effects
commonly ascribed to the general relativity.

7 Unsolved and
predicted propagation phenomena

In this section, we discuss the stellar aberration, a propa-
gation phenomenon not yet solved in the proposed model.
Furthermore, we propose some propagation experiments
not yet reported before. These predicted propagation phe-
nomena as well as the predicted second-order round-trip
Sagnac effect due to earth’s rotation in Michelson–Morley-
like experiments provide different approaches to test the
proposed local-ether model.

7.1 Stellar aberration

Consider Bradley’s stellar aberration observed in as early
as 1725 [1]. In this experiment, the axis of a telescope has

to be tilted by a small angle α in order for the light beam
from a distant star to form an image at the center of the
focal plane. Like the eclipse interval in Roemer’s obser-
vations and the antenna temperature in CMBR, this tilt
angle exhibits diurnal and seasonal variations. Actually,
the stellar aberration is detected by these variations.

Based on the proposed model, no matter how far the
star is, the light observable on the ground eventually en-
ters into the sun local ether and then into the earth local
ether. If the earth local ether can be omitted, then it is the
movement of the telescope with respect to the sun local
ether that determines the aberration. Further, only the
movement transverse to the propagation path contributes
to the aberration. Thereby, a classical derivation immedi-
ately leads to the aberration angle α given by

α = tan−1 (v⊥/c) , (29)

where v⊥ is the transverse component of the velocity of
a geostationary telescope with respect to a heliocentric
inertial frame. Since this velocity incorporates earth’s ro-
tational and orbital motions, the diurnal and the annual
stellar aberrations can be expected, respectively.

Further, this formula shows that the aberration does
not depend on the motion of source. This is in accord with
the observation that aberrations for binary stars and for
other stars are not different among themselves, in spite
of the fact that the velocities of these stars can be quite
different with respect to a geostationary telescope [45–47].

However, if the earth local ether is taken into consider-
ation as it should, the explanation for the annual aberra-
tion is difficult. This is because the physical nature of the
interface separating the two local ethers in relative mo-
tion and the wave behaviors (especially, the propagation
direction) across the interface have to be identified. These
interface problems cannot be determined from the propa-
gation phenomena examined and are yet to be explored.
Anyway, the local-ether model is in accord with the diur-
nal aberration, as this aberration is associated with the
movement of the telescope with respect to the earth local
ether and does not involve the interface.

7.2 One-way-link rotor

Reconsider the Michelson–Morley experiment. In order to
test the Sagnac effect due to earth’s rotation in a more
feasible approach, we propose the rotor experiment by
putting the setup of the aforementioned one-way-link ex-
periment with a shortened link or that of the Kennedy–
Thorndike experiment on a rotor or a turntable, just as in
the Michelson–Morley experiment. However, unlike in the
Michelson–Morley-type experiments, the Sagnac effect on
the one-way propagation time is of first order and hence
the measurement could be easier. To simplify its role in
wave propagation, the fiber had better be replaced simply
with free space as the link.

As the rotor is rotating, the direction of Rt and hence
the dot product Rt · vE in the propagation-time formula
(19) will change, where Rt is the directed separation dis-
tance from the source to the receiver and vE is the linear
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velocity due to earth’s rotation. Accordingly, to the first
order of the normalized speed, the fractional variation in
the one-way propagation time is given by

∆τ

τ
=

vE

c
cos θT , (30)

where θT is the angle from vE to Rt and corresponds to
the turning angle of the turntable. Since the velocity vE
is eastward, θT = 0 and π when Rt points in the east and
the west directions, respectively.

The corresponding phase shift is then expected to ex-
hibit a sinusoidal variation:

∆φ = 2πfRt
vE

c2 cos θT

� 1.86fRt cos θl cos θT × 10−3, (31)

where the phase shift ∆φ is in deg, the frequency f in
GHz, the path length Rt in meter, and θl is the latitude.
The phase shift reaches maximum and minimum when the
rotor comes to a position such that Rt is eastward and
westward, respectively. Consequently, the spatial isotropy
may break down and a dipole anisotropy could be ob-
served, as the rotor is rotating. Thereby, the proposed
one-way-link rotor or the Kennedy–Thorndike rotor ex-
periment can provide a rather direct means to test the
propagation model to the first order of the normalized
speed.

7.3 Second-order radar Doppler shift

Finally, we consider the Doppler frequency shift in the
monostatic radar system, where the received frequency fr
after reflection from the target tends to differ from the
transmitted frequency ft. The first-order round-trip prop-
agation range implied in (11) is given by R = 2Rt(1+u/c),
where the radial speed u = v · R̂t and v is the velocity of
the target relative to the transceiver. Then, by replacing
this propagation range in the Doppler formula (21), the
transmitted and the received frequencies for the round-
trip propagation are related by

ft

fr
= 1 + 2

dRt

cdt
+ 2

d (v · Rt)
c2dt

. (32)

As given in [48], the second-order radar Doppler formula
becomes

ft

fr
= 1 +

2u
c

+
2v2

c2 +
2a · Rt

c2 , (33)

where the acceleration a = dv/dt. The inverse frequency
ratio given to the second order is

fr

ft
= 1 − 2u

c
− 2v2

c2 − 2a · Rt

c2 +
4u2

c2 . (34)

It is noted that both the first and the second orders of the
normalized speeds in the radar Doppler shift depend on
relative velocity.

For the case of radial relative motion without accelera-
tion (u = ±v and a = 0), the second-order radar Doppler
formula becomes simpler:

fr

ft
= 1 − 2u

c
+

2u2

c2 =
1 − u/c

1 + u/c
. (35)

This agrees with the formula derived in several different
approaches, including the Lorentz transformation [49,50],
the moving boundary conditions on plane wave reflection
[26], and the variation in radar range [50].

However, for the general case, the radar Doppler for-
mula predicted by the local-ether model disagrees with
the preceding formula in the second-order terms. For the
case of transverse relative motion where u = 0, the local-
ether model leads to a nonzero frequency shift of ∆f/ft =
−2v2/c2, where ∆f = fr − ft, in addition to that due
to the acceleration. It has been pointed out that for the
case where the target is a low-earth-orbit satellite and the
transmitted frequency is 10GHz, the discrepancy between
the preceding two formulas can be a few Hz [48]. Thus, the
radar Doppler shift provides a means to test the propaga-
tion model to the second order.

8 Discussion

The local-ether model of wave propagation proposed in
this investigation provides the groundwork for a wave
equation governing both electromagnetic and matter
waves. In a potential-free region, the local-ether wave equa-
tion is proposed to be{

∇2 − 1
c2

∂2

∂t2

}
Ψ(r, t) =

ω2
0

c2 Ψ(r, t), (36)

where the natural angular frequency ω0 is supposed to be
an inherent constant of the particle represented by the
wavefunction Ψ . This wave equation looks like the Klein–
Gordan equation; however, one fundamental difference is
that the position vector r and hence the time derivative
in this wave equation are referred uniquely to the local-
ether frame. If the natural frequency is zero, the equation
reduces to the homogeneous wave equation for an elec-
tromagnetic wave in free space discussed in this investiga-
tion. Consequently, the propagation of an electromagnetic
wave is then referred to the local-ether frame, as proposed
in this investigation.

Under the influence of the gravitational potential due
to a celestial body, it is supposed that the d’Alembertian
operator in the local-ether wave equation is modified. Fur-
thermore, under the influence of the electric scalar poten-
tial due to another charged particle, it is supposed that
the natural frequency in the wave equation connects to
this potential which in turn connects to the augmentation
operator. Quantitatively, it is proposed that under the in-
fluence of the gravitational potential Φg and the electric
scalar potential Φ, the matter wave Ψ of the particle of
natural frequency ω0 and charge q is governed by the local-
ether wave equation proposed to be{

1
ng

∇2 − ng

c2

∂2

∂t2

}
Ψ(r, t)
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=
ω2

0

c2

{
1 + 2

qΦ

�ω0
(1 + U)

}
Ψ(r, t), (37)

where � connecting to the electric scalar potential is
Planck’s constant divided by 2π and the augmentation
operator U is associated with the Laplacian operator and
the velocity of the source particle. All the involved phys-
ical quantities, position vectors, time derivatives, veloci-
ties, and the current density, are referred uniquely to their
respective reference frames. It has been shown that this
local-ether wave equation leads to a unified quantum the-
ory of the gravitational and the electromagnetic forces in
conjunction with the identity of gravitational and inertial
mass [51–53].

Furthermore, the local-ether wave equation leads to
the speed-dependent angular frequency and wavelength of
the matter wave and the speed-dependent mass of the par-
ticle. These formulas look like the postulates of de Broglie
and the Lorentz mass-variation law, except for the ref-
erence frame of the particle speed. As the mass of the
electron or the nucleon affects the energies of the quan-
tum states in an atom or a molecule, the transition fre-
quency between two quantum states depends on the par-
ticle speed. Like the propagation speed of an earthbound
electromagnetic wave, the speed of an earthbound particle
that determines quantum energy and transition frequency
is referred uniquely to an ECI frame. Consequently, this
speed-dependent transition frequency then accounts for
the east–west anisotropy in the Hafele–Keating experi-
ment with circumnavigation atomic clocks and for the
high synchronism among the various GPS atomic clocks
[54,55]. Moreover, the shift in speed-dependent transition
frequency is in accord with the clock-rate adjustment [5,
7] to keep the GPS atomic clocks synchronous with the
ground clocks, as the former are much faster in an ECI
frame.

9 Conclusion

It is supposed that an electromagnetic wave propagates
via a medium like the ether. However, the ether is not
universal. It is proposed that in the region under suffi-
cient influence of the gravity due to the earth, the sun, or
another celestial body, there forms a local ether which in
turn is stationary with respect to the gravitational poten-
tial of the respective body. Thereupon, each local ether
together with the gravitational potential moves with the
associated celestial body. Thus the earth and the sun local
ethers are stationary in a geocentric and a heliocentric in-
ertial frame, respectively. Consequently, the propagation
of an earthbound electromagnetic wave is referred to this
geocentric frame and is entirely independent of earth’s or-
bital motion around the sun or whatever, while for in-
terplanetary propagation, the sun local ether is the main
propagation medium and hence the majority of propaga-
tions are referred to this heliocentric frame and indepen-
dent of the orbital motion of the sun. The speed of light is
referred to the associated local ether and is independent
of the motions of source and receiver. However, by virtue
of the Sagnac effect due to the movement of receiver with

respect to the local ether during wave propagation, the
propagation range over the associated medium tends to
be different from the frame-independent path length.

Based on the propagation-range formula, the local-
ether model has been used to solve the discrepancies in
the effects of earth’s rotational and orbital motions. By
referring the earthbound propagation range to an ECI
frame, the local-ether model accounts for the first-order
Sagnac effect due to earth’s rotation in GPS, intercon-
tinental microwave link experiments, and in loop inter-
ferometry. Meanwhile, the local-ether model immediately
accounts for the null effect of earth’s orbital motion on
the earthbound propagations in GPS, intercontinental mi-
crowave link experiments, loop interferometry, the one-
way fiber link experiment, the Kennedy–Thorndike ex-
periment, the cavity heterodyne experiment, and in the
Michelson–Morley experiment.

By referring the interplanetary propagation range to
a heliocentric inertial frame, both rotational and orbital
motions of the earth are expected to contribute to the
Sagnac effect. Thus, the local-ether model accounts for the
discrepancy in the Sagnac effect due to earth’s orbital mo-
tion between the interplanetary radar and the earthbound
GPS and microwave link. When the source and hence the
main propagation path are outside the solar system, the
orbital motion of the sun as well as earth’s motions is ex-
pected to contribute to the Doppler effect. This effect is
in accord with the dipole anisotropy found in the antenna
and the blackbody temperatures of CMBR and with the
seasonal variation of the dipole amplitude.

Moreover, the local-ether model is in accord with the
earthbound radar echo time, the constancy of the speed
of light from binary stars, synchrotron electrons, and from
semistable particles, and with the Doppler effect in GPS,
stellar frequency shift, Roemer’s observations, and in
earthbound radar measurements. Further, by modifying
the d’Alembertian of the wave equation and hence the
speed of light under a gravitational potential, the local-
ether model is in accord with the deflection of light by
the sun and the increase in the interplanetary radar echo
time for a microwave passing close to the sun, which are
commonly cited as evidence supporting the general theory
of relativity.

Although earth’s rotation contributes to the Sagnac
effect, this effect in a geostationary propagation path is
invariant under the earth’s rotation. This accounts for the
hourly and daily stability in phase difference in the one-
way fiber link experiment and in the Kennedy–Thorndike
experiment and that in beat frequency in the cavity het-
erodyne experiment. Thus it is the invariance in the
Sagnac effect that corresponds to the spatial isotropy ob-
served in these geostationary interference experiments.
However, if the interferometer is put on a turntable as
in the Michelson–Morley experiment, the isotropy may
break down and hence a directional anisotropy could be
observed as the turntable is rotating. Based on the round-
trip Sagnac effect due to earth’s rotation, we predict a
quadrupole anisotropy in beat frequency in the cavity
heterodyne experiment as well as that in the interfer-
ence fringes in the Michelson–Morley experiment. Further,
based on the one-way Sagnac effect due to earth’s rota-
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tion, we propose the one-way-link rotor or the Kennedy–
Thorndike rotor experiment, in which a dipole anisotropy
in phase shift is predicted. Unlike that in the
Michelson–Morley-type experiments, the one-way Sagnac
effect is of the first order of the normalized speed and
hence the measurement could be easier.

As a last word, although the proposed local-ether
model is just a simple modification of the classical prop-
agation model with the switchability of the propagation
frame, it does account for a wide variety of earthbound,
interplanetary, and interstellar propagation phenomena,
except for the annual stellar aberration. The strong evi-
dence of this model is its consistent account of the Sagnac
effect due to the earth’s motions among GPS, the intercon-
tinental microwave link and the interplanetary radar ex-
periments, and the Michelson–Morley experiment. More-
over, it leads to new predictions associated with the one-
way or round-trip Sagnac effect due to earth’s rotation,
which provide different approaches to test the local-ether
model. Further, the proposed propagation model provides
the groundwork for the local-ether wave equation which
leads to a unified quantum theory of the gravitational and
the electromagnetic forces and to a speed-dependence in
the angular frequency, wavelength, mass, quantum energy,
and transition frequency.
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